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Abstract

Useful formulas for design of TPCs with multiple parallel wire planes are derived using
an extension of conformal representation theory previously applied to single-grid ionization
chambers.[1] Expressions are given for the electric potential and �eld lines around the wires, the
fraction of electrons collected by the wire planes, and the relation between wire plane voltages
and asymptotic �elds between planes.

1 Introduction

Conformal representation analysis of 2d electrostatics problems is based on the useful fact that
U(x, y) and V (x, y) are both solutions of the Laplace equation if W = U + iV is an analytic
function of z = x + iy. By convention, V is taken to be the electrostatic potential; contours of
constant U are perpendicular to contours of V at all points and trace �eld lines.

Useful equations for the complex potential W near a plane of regularly spaced wires are given
in [1], and are repeated below; for ease of comparison, the choice to de�ne �electric �eld� to point in
the direction of force on electrons has been retained. In the following equations x is perpendicular
to the wire plane, d is the center-to-center distance between wires in the plane, r is the radius of the
wires, and E− and E+ are the asymptotic �elds at x . −d and x & +d, respectively. A di�erence
between the electric �elds ∆E = E+−E− requires a net electric charge on the wires. The potential
due to the wire net charges is very well approximated by

WL =
∆E

2π
di

(
log sinh

πz

d
− log

πr

d

)
. (1.1)

This potential is zero to O
(
(πr/d)2/6

)
on circles of radius r around z = 0,±d,±2d..., and gives

�eld ±1
2∆E at large ±x. The average �eld Ē = (E+ +E−)/2 induces a dipole moment on the wire

plane, whose potential is

WD = −iĒr2π
d

coth
πz

d
. (1.2)

The corresponding electric �eld drops to zero at large x. An overall average electric �eld contributes
potential

WE = iĒz.
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2 Multiple Wire Planes

Now we consider the case of three wire planes located at x = −s, 0,+s. Let E0 be the asymptotic
�eld at large negative x, E1 the asymptotic �eld between the �rst and second planes, E2 be the
asymptotic �eld between the second and third planes, and E3 the �eld at large positive x. The
potential is

W = WL(z + s; ∆E1) +WD(z + s; Ē1)

+WL(z + s; ∆E2) +WD(z + s; Ē2)

+WL(z + s; ∆E3) +WD(z + s; Ē3)

+i
1

2
(E0 + E3)z, (2.1)

where ∆Ei = Ei − Ei−1 and Ēi = 1
2(Ei + Ei−1).

Figure 2.1 shows an example of the potentials plotted in a particular case.
The condition for transparency is that no �eld lines intercept a grid wire; equivalently, there

should be no contour at the same potential as the wire extending from the wire, as there is in the
top right panel of 2.1. This is entirely determined by the potential near the wire, and the resulting
equation is unchanged from that derived in [1]. If electrons are drifting from −x to +x, the condition
is

E+

E−
>

1 + ρ

1− ρ
(2.2)

where ρ = 2πr/d.
The relation between electric �elds and wire plane voltages is somewhat di�erent from that given

for the single wire grid in [1]. The potential as a function of x passing through a single wire is

V (x) =
∆E

2π
d
(

log sinh
πz

d
− log

πr

d

)
+ Ē

(
x− r2π

d
coth

πx

d

)
.

For |x| & d this is

V (x) =
∆E

2

(
|x| − d

π
log

2πr

d

)
+ Ē

(
x− r2π

d

)
+O

(
e−2π|x|/d

)
= E+

(
x− πr2

d

)
+ ∆E

d

2π

(
r2π2

d2
− log

2πr

d

)
(x & +d),

= E−

(
x+

πr2

d

)
+ ∆E

d

2π

(
r2π2

d2
− log

2πr

d

)
(x . −d),

where E+ and E− are the asymptotic �elds on the positve x and negative x sides of the wire plane.
De�ning t = 2πr2/d = ρr and l = (rπ/d)2− log(2πr/d) = ρ2/4− log ρ, the above equation becomes

V±(x) = E±(x∓ 1

2
t) + ∆El (±x & d). (2.3)

This is the same as derived in [1], and can be used to �nd the voltage di�erence between a solid
conducting plate at large negative x and the wire plane at most negative x, or between the wire
plane at most positive x and a solid conducting plate at large positive x.

We wish to calculate di�erence in potential between two adjacent wire planes separated by
∆x = s. Both wires contribution to the potential is zero at their own position. The di�erence in
potential is

∆V =

[
E1(s−

1

2
t1) + (E1 − E0)l1

]
−
[
E1(−s+

1

2
t2) + (E2 − E1)l2

]
, (2.4)
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Figure 2.1: Potential plotted for the case where E0 = 500 V/cm, E1=718 V/cm, E2 = 816 V/cm,
E3 = −149 V/cm, s = d = 0.3 cm, r = 75µm. Plots show potential near a wire at x = −s (top
left), a wire at x = 0 (top right), a wire at x = +s (bottom left), and across all three planes (bottom
right). Voltages at the wire planes are V1, V2, V3 = −225V, 0V, +338 V, the voltage at −25.6 cm
is −12856 V, and the voltage at +2.0 cm is 0 V. Note the saddle point in the potential to the left
of the wire in the top left plot: the wire is repulsive to electrons arriving from any direction. In
contrast, note the contour at the same potential as the wire intercepting the wire in the top right
plot: some �eld lines arriving from the right terminate at this wire.
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Figure 3.1: First induction plane and collection plane voltages are -210 V and +440 V. The gradient
near each induction wire surface is repulsive, and there is complete transparency. The ratio of
asymptotic �elds is E1/E0 = 1.450 at the �rst plane, E2/E1 = 1.411 at the second.

where t1, l1 (t2, l2) denote the geometric parameters of the �rst (second) wire plane, E1 is the
asymptotic �eld between the two planes, and E0 (E2) is the �eld at large negative (positive) x. In
the case where the two planes have identical r and d, this simpi�es to

∆V = E1(s− t) + (2E1 − E0 − E2)l. (2.5)

This equation has been checked numerically against Eq. 2.1.

3 More example plots

Here are some additional �gures to demonstrate various cases. In each �gure, as in Fig. 2.1, the
top left shows a close look at a wire in the �rst induction plane, top right is a wire in the second
induction plane, the bottom left is a collection plane wire, and the bottom right is a view of all three
planes. A hash-�lled circle to indicates the boundaries of the wires. As expected, there is a constant
voltage contour on that surface in each case. All �gures have 500 V/cm in the drift region at large
negative x, 0 V at the 2nd induction plane, and 0 V at a plane 2 cm behind the collection wires. All
have s = d = 0.3 cm, r = 75µm, giving a �eld ratio for grid transparency (1 + ρ)/(1 − ρ) = 1.373
(Eq. 2.2). All dimensions are cm, all voltages are volts.
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Figure 3.2: Case where both �eld ratios are 1.400. The corresponding voltages are a little closer to
zero in comparison to the -210V, +440V biases case shown in Fig. 3.1. Full transparency is again
attained at the induction planes. Note how similar the potentials are around the wires in the two
induction planes, as expected since the local potential is determined solely by the asymptotic �elds
on either side of the wire.
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Figure 3.3: Case where both �eld ratios are 1.500 for comparison.
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Figure 3.4: Here the voltages have been adjusted to give E1 = 0 in the region between the �rst
and second induction planes, and E0 = E2 = 500 V/cm. This would not be useful for normal TPC
operation, but might be useful if there was reason to pull the �rst induction plane towards the
cathode while pulling the second induction plane in the opposite direction.
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4 Source Code

The Python code used to make the �gure and check equations is given below.

""" WirePlanes3.py -- use conformal mapping to solve for electrostatic

potential in case of three wire planes between two plates , using the

conformal representation technique of Buneman , et al., Can.J.Res.27A

pp. 191 -206 (1949). The solution is guaranteed to obey Laplace 's

equation by the properties of analytic functions; correctness of the

boundary conditions is checked by verifying potentials on the surfaces

of the wires and plates.

All arguments z = x + iy are coordinates in (x,y) plane , may be numpy arrays.

All functiosn W = U + iV are complex potential , V = electrostatic potential.

:authors: Glenn Horton -Smith , 2015 -08 -14

"""

import numpy as np

import matplotlib.pyplot as plt

pi = np.pi

def logsinh(z):

""" Protect against overflows in log(sinh(z)).

The argument z can (should) be a numpy array."""

z = np.array(z+0.0j, ndmin =1)

mask = (np.abs(z.real) <= 20.0)

W = np.zeros_like(z)

W[mask] = np.log(np.sinh(z[mask ]))

if not mask.all ():

mask = z.real > 20.0

W[mask] = z[mask]-np.log (2.0)

mask = z.real < -20.0

W[mask] = -z[mask]+pi*1j-np.log (2.0)

W = W.real + 1.j*(np.mod(W.imag+pi ,2.0* pi)-pi)

return W

def W_L(z, dE , d, r):

""" Wire plane potential due to net charge on wires

for single plane at x=0 and zero potential on the wires.

z = x+iy = coordinate

dE = difference in asymptotic field in x direction on two sides of plane ,

dE = E_right - E_left

d = wire pitch , spacing center to center of wires in this plane

r = radius of wire

"""

W = 1j*(dE/(2*pi))*d*( logsinh(pi*z/d)-np.log(pi*r/d))

return W

def W_D(z, Emean , d, r):

""" Potential due to induced dipole on wires
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for single plane at x=0 and zero potential on the wires.

z = x+iy = coordinate

Emean = average of asymptotic horizontal field on two sides of plane

d = wire pitch , spacing center to center of wires in this plane

r = radius of wire

"""

return -1j*Emean*r**2*( pi/d)*np.tanh(pi*z/d)**-1

def W_E(z, Emean):

""" Potential due to constant mean field

z = x+iy = coordinate

Emean = average asymptotic horizontal field

"""

return 1j*Emean*z

def W_3(z, E0 , E1 , E2 , E3 , d, r, s):

""" Combined potential for three wire planes , where

first wire plane is at x=-s, second at x=0, third at x=+s.

z = x+iy = coordinate

E0 = asymptotic field in region x < -s.

E1 = asymptotic field between first and second wire planes.

E2 = asymptotic field between second and third wire planes.

E3 = asymptotic field in region x > +s.

d = wire pitch , spacing center to center of wires in this plane

r = radius of wire

s = wire plane spacing , center to center

Note that the field between the planes will only approach the

asymptotic values E1 and E2 in the case of s >> d. The potential

returned by this function will be a solution of Laplace equation with

equipotential surfaces in the correct place regardless. The E parameters

can be adjusted as needed to obtain particular wire voltages , or they can

be adjusted to obtain transparency and voltages found.

"""

# first calculate the dE and Emeans

# we're going to superpose fields that are Em+dE/2 on right , Em -dE/2 on left

# E0 = Em + 0.5*(-dE1 -dE2 -dE3)

# E1 = Em + 0.5*(+dE1 -dE2 -dE3)

# E2 = Em + 0.5*(+ dE1+dE2 -dE3)

# E3 = Em + 0.5*(+ dE1+dE2+dE3)

#

# solution is

# Em = (E0+E3)/2

# dE1 = E1-E0

# dE2 = E2-E1

# dE3 = E3-E2

#

W1 = W_L(z+s, E1-E0 , d, r) + W_D(z+s, 0.5*( E1+E0), d, r)

W2 = W_L(z, E2-E1, d, r) + W_D(z, 0.5*(E2+E1), d, r)

W3 = W_L(z-s, E3-E2 , d, r) + W_D(z-s, 0.5*( E3+E2), d, r)

W = W1 + W2 + W3 + W_E(z, 0.5*( E0+E3))

return W

def find_surface_potentials(E0 , E1, E2, E3, d, r, s, x0, x4):
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""" Checks the surface potentials at the wires and the plates.

Finds values and also checks uniformity.

E0, E1 , E2 , E3 , d, r, s have the same meaning as in W_3.

x0 and x4 are locations far from wires , e.g., a cathode and anode.

Returns a tuple of two 5-element lists.

The first element of the tuple contains the voltages [V0 , V1 , V2 , V3 , V4],

where V1 ,2,3 are the wire voltages and V0 ,V4 are potential at x0 , x4.

The second element contains the minimum and maximum values found along

the surfaces.

"""

V = [0.0]*5

dV = [0.0]*5

#-- check planes at two key points

for i,x in ( (0,x0), (4,x4) ):

ztest = np.array ([x+0j, x+d*0.5j])

Varr = W_3(ztest , E0 , E1 , E2, E3, d, r, s).imag

V[i] = np.average(Varr)

dV[i] = Varr.max()-Varr.min()

#-- check planes at four key points

for i in [1,2,3]:

x = (i-2)*s

ztest = np.array ([x+r+0j, x+r*1j, x-r+0j, x-r*1j])

Varr = W_3(ztest , E0 , E1 , E2, E3, d, r, s).imag

V[i] = np.average(Varr)

dV[i] = Varr.max()-Varr.min()

return np.array(V), np.array(dV)

def plotW_3(rangex , rangey , nsamp , E0, E1, E2, E3, d, r, s):

""" Plot potentials in a range of x and y"""

#-- make z using numpy.mgrid

xy = np.mgrid[rangex [0]: rangex [1]:( nsamp *1j),

rangey [0]: rangey [1]:( nsamp *1j)]

z = xy [0]+1j*xy[1]

W = W_3(z, E0 , E1 , E2 , E3 , d, r, s)

V = W.imag

Vsurf , dV = find_surface_potentials(E0, E1, E2, E3 , d, r, s,

rangex [0], rangex [1])

V -= Vsurf [2]

Vsurf -= Vsurf [2]

print Vsurf ,dV

nwire = 0

iwire = 0

for i in range (1,4):

if rangex [0] < s*(i-2)+r and rangex [1] > s*(i-2)-r:

iwire = i

nwire += 1

if nwire == 0:

print "no wires in field"

Vmin = np.min(V)

Vmax = np.max(V)

Vlevels = np.linspace(Vmin , Vmax , 20)

elif nwire > 1:

print nwire , "wires in field"
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Vmin = np.min(Vsurf -dV)

Vmax = np.max(Vsurf+dV)

Vlevels = np.linspace(Vmin , Vmax , 20)

else:

print "1 wire in field"

Vsliced = V[ np.abs(xy[0]-s*(iwire -2)) > r]

Vmin = Vsliced.min()

Vmax = Vsliced.max()

Vstep = (Vmax -Vmin )/10

V0 = Vsurf[iwire]

print Vmin ,V0,Vmax

Vlevels = V0 + np.arange( int((Vmin -V0)/Vstep -1.5),

int((Vmax -V0)/Vstep +2.5) )*Vstep

print Vlevels

contour = plt.contour(xy[0], xy[1], V, Vlevels)

colorbar = plt.colorbar(contour , spacing='proportional ',

format='%.1f')

plt.grid()

if nwire == 1:

phi = np.linspace(-pi, pi, 60)

y0 = d*np.round (0.5*( rangey [0]+ rangey [1])/s)

x0 = s*(iwire -2)

plt.fill(x0+r*np.cos(phi), y0+r*np.sin(phi),

fill=False , hatch='/', zorder = -100)

return (contour , colorbar)

def plot_4pane(E0, E1, E2, E3 , d, r, s, x0 , x4):

""" Plot a 4-pane view of potentials around wires and an overview of

all three wire planes.

"""

V, dV = find_surface_potentials(E0 , E1 , E2 , E3 , d, r, s,

x0 , x4)

V -= V[2]

fig = plt.figure(figsize =[9.0 ,6.5])

fig.text (0.5, 0.95,

"E0=%g, E1=%g, E2=%g, E3=%g" % (E0,E1,E2,E3),

ha='center ', va='bottom ')

fig.text (0.5, 0.95,

"V(%g)=%g, V1=%g, V2=%g, V3=%g, V(%g)=%g" % (

x0, V[0], V[1], V[2], V[3], x4, V[4]),

ha='center ', va='top')

fig.add_subplot (2,2,1, aspect =1)

plotW_3([-s -2.75*r,-s+1.25*r], [-2*r,2*r], 400, E0 , E1 , E2 , E3 , d, r, s)

fig.add_subplot (2,2,2, aspect =1)

plotW_3 ([ -2.75*r ,+1.25*r], [-2*r,2*r], 400, E0 , E1, E2, E3, d, r, s)

fig.add_subplot (2,2,3, aspect =1)

plotW_3 ([+s-2*r,+s+2*r], [-2*r,2*r], 400, E0, E1, E2, E3, d, r, s)

fig.add_subplot (2,2,4, aspect =1)

sd = s+d

plotW_3([-sd ,+sd], [-sd,sd], 400, E0, E1, E2, E3, d, r, s)

return fig
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def plot_many ():

""" Plot potentials for four example cases """

figs = []

rat = 1.5

fig_rat_1p5 = plot_4pane (500.0 , rat*500, rat **2*500 , -217.0, 0.3, 75e-4, 0.3, -25.6, 2.0)

fig_rat_1p5.show()

fig_rat_1p5.savefig('rat_1p5.pdf')

fig_rat_1p5.savefig('rat_1p5.png')

figs.append(fig_rat_1p5)

rat = 1.4

fig_rat_1p4 = plot_4pane (500.0 , rat*500, rat **2*500 , -187.0, 0.3, 75e-4, 0.3, -25.6, 2.0)

fig_rat_1p4.show()

fig_rat_1p4.savefig('rat_1p4.pdf')

fig_rat_1p4.savefig('rat_1p4.png')

figs.append(fig_rat_1p4)

fig_BoVolts = plot_4pane (500.0 , 725., 1023. , -196., 0.3, 75e-4, 0.3, -25.6, 2.0)

fig_BoVolts.show()

fig_BoVolts.savefig('BoVolts.pdf')

fig_BoVolts.savefig('BoVolts.png')

figs.append(fig_BoVolts)

fig_OnePlaneEstVolts = plot_4pane (500.0 , 718.0, 816.0, -149.0, 0.3, 75e-4, 0.3, -25.6, 2.0)

fig_OnePlaneEstVolts.show()

fig_OnePlaneEstVolts.savefig('OnePlaneEstVolts.pdf')

fig_OnePlaneEstVolts.savefig('OnePlaneEstVolts.png')

figs.append(fig_OnePlaneEstVolts)

return figs
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